terça-feira, 30 de novembro de 2010

O início da Geometria Analítica

Em 1637, o matemático e filósofo francês Renée Descartes publicou seu
grande trabalho O Discurso sobre o Método, em que são estabelecidas asbases filosóficas de seu método para o estudo das ciências, o chamado método cartesiano, até hoje presente na organização do conhecimento em muitas áreas. No apêndice, Descartes ilustra o seu método apresentando a “Géométrie”, que foi o passo inicial no estabelecimento de relações mais estreitas entre a Álgebra e a Geometria. O trabalho contém uma teoria para equações algébricasassociadas a curvas planas – por exemplo, equações de segundo grau associadas a parábolas. Alguns anos mais tarde, um outro matemático francês, Pierre Fermat, publicou um trabalho onde também relacionou equações a retas, às curvas que chamamos cônicas e a outras curvas até então pouco conhecidas. Tem-se registros de que as idéias iniciais de Fermat sobre a Geometria Analítica são, na verdade, anteriores ao trabalho de Descartes, mas esses registros só foram encontrados e publicados em 1769, após a sua morte. A Geometria Analítica, trata, portanto, desde a sua origem, das relações entre as equações algébricas e os objetos geométricos, buscando a simplificação técnica dos problemas geométricos e a interpretação geométrica dos resultados obtidos nos cálculos algébricos. Os cálculos e a descrição dos objetos geométricos ficam mais simples com os recursos algébricos da teoria das matrizes associados aos processos de resolução de equações.
As técnicas da Geometria Analítica desempenham um papel fundamental ainda hoje, por exemplo, no desenvolvimento da Computação Gráfica. As telas dos nossos computadores são modelos da estrutura do plano cartesiano com um número finito de pontos, que é sempre mencionado quando escolhemos a configuração da tela. Aumentando o número de pontos, melhoramos a qualidade da imagem do monitor ou da impressão dessa imagem. Nas muitas utilizações de recursos de imagens, como na tomografia ou na localização por satélite, essa organização é fundamental para uma interpretação precisa dos resultados obtidos.

Nenhum comentário:

Postar um comentário